On the Lattice Point Covering Problem in Dimension 2
نویسندگان
چکیده
منابع مشابه
2 Set Covering Problem
In the previous lecture, we covered a series of online/offline edge-weighted Steiner tree/forest problems. This lecture extends the discussion to the node-weighted scope. In particular, we will study the nodeweighted Steiner tree/forest problem and introduce an offline O(logn)−approximation polynomial-time algorithm[KR95]. It is well known there is no polynormial-time algorithm that achieves o(...
متن کاملFrobenius Problem and the Covering Radius of a Lattice
Let N ≥ 2 and let 1 < a1 < · · · < aN be relatively prime integers. Frobenius number of this N-tuple is defined to be the largest positive integer that cannot be expressed as P N i=1 aixi where x1, ..., xN are non-negative integers. The condition that gcd(a1 , ..., aN ) = 1 implies that such number exists. The general problem of determining the Frobenius number given N and a1, ..., aN is NP-har...
متن کاملOn the Covering Steiner Problem
The Covering Steiner problem is a common generalization of the k-MST and Group Steiner problems. An instance of the Covering Steiner problem consists of an undirected graph with edge-costs, and some subsets of vertices called groups, with each group being equipped with a non-negative integer value (called its requirement); the problem is to find a minimum-cost tree which spans at least the requ...
متن کاملCovering Lattice Points by Subspaces and Counting Point-Hyperplane Incidences
Let d and k be integers with 1 ≤ k ≤ d − 1. Let Λ be a d-dimensional lattice and let K be a d-dimensional compact convex body symmetric about the origin. We provide estimates for the minimum number of k-dimensional linear subspaces needed to cover all points in Λ ∩ K. In particular, our results imply that the minimum number of k-dimensional linear subspaces needed to cover the d-dimensional n ×...
متن کاملOn Conditional Covering Problem
The Conditional Covering Problem (CCP) aims to locate facilities on a graph, where the vertex set represents both the demand points and the potential facility locations. The problem has a constraint that each vertex can cover only those vertices that lie within its covering radius and no vertex can cover itself. The objective of the problem is to find a set that minimizes the sum of the facilit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Electronic Journal of Combinatorics
سال: 2019
ISSN: 1077-8926
DOI: 10.37236/8245